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Abstract

The SpiNNaker project aims to produce a mas-
sively parallel machine containing one million
low-power processor cores for running neural
simulations in real-time. The system will con-
sist of multiple circuit boards each hosting 864
ARM processors on 48 chips connected in a
hexagonal mesh topology. In order to con-
nect the boards together, the outer edges of the
boards will be joined together to form a large
toroidal mesh via a number of S-ATA links. A
simulator was built to asses the effects of these
links on packet latency when naive dimension-
order routing is used. Our results show that a
latency overhead of 80% is introduced by the
links. The ‘emergency routing’ protocol im-
plemented by SpiNNaker was also observed to
interact non-optimally with the S-ATA links.
Possible measures are proposed which may al-
leviate some of the problems observed.

1 Introduction

The SpiNNaker system is a machine designed
to emulating the behaviour of the brain us-
ing a novel, massively-parallel system architec-
ture. The system will ultimately be made up
of 1,036,800 low-power ARM processors simu-
lating a network of one billion neuron models
in real-time. As such, it is important that mes-
sages can travel around the system with rela-
tively low latencies.

A machine will be built out of circuit boards
containing 48 18-core SpiNNaker chips. The
chips are connected to each-other by delay-
insensitive links consisting of 8 wires per link.
Linking the boards together using this type of
link is not practical: hundreds of inter-board

wires would be required coming with a signif-
icant performance and power cost. Instead,
these links will be transparently multiplexed
onto six high-speed S-ATA based links with
equivalent total bandwidth.

A high-level simulator was built to observe
the interaction between the naive dimension-
order routing algorithm used by current SpiN-
Naker systems and the proposed heterogeneous
network.

In section 2 the SpiNNaker architecture and
topology is introduced. In section 3 the de-
sign of our simulator is described along with
the modelling simplifications made. Finally,
experimental results from our simulations are
presented in 4 followed by conclusions and pro-
posed future work in 5.

2 SpiNNaker Architecture

This section introduces the topology of the in-
terconnection network used in the SpiNNaker
system followed by the proposed inter-board
S-ATA links.

2.1 Topology

The smallest unit in the system is the SpiN-
Naker chip consisting of 18 low-power ARM
processors, a router and some memory [6].
Each chip is connected to six of its neighbours
to the as shown in figure 1. These links use
a pair of delay-insensitive 8-wire 2-of-7 non-
return-to-zero (NRZ) connections to transfer
packets of data.

The system is made up of a grid of chips in
which the outermost connections wrap around
into the shape of a torus. This transformation
can be visualised by imagining the top half of
the mesh rolled around to meet the bottom half
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Figure 1: Chips in the SpiNNaker system
are connected to their north, north-east, east,
south, south-west and west neighbours. Con-
nections on the extreme edges of the system are
connected together forming a torus (not shown
here).

forming a tube. This tube is then bent around
so that the two ends meet forming a torus.

Boards containing forty-eight SpiNNaker
chips are the next largest unit in the sys-
tem. The chips are arranged into a hexagon
as shown in figure 2. This exposes six pairs of
complementary edges of equal numbers of links
which can be connected to other boards.

Three boards can be combined as shown in
figure 3 to form a torus. This formation can
be repeated in order to produce larger sys-
tems. The final, full-scale SpiNNaker machine
will feature 20 repeats of this formation hor-
izontally and vertically to produce a system
with 57,600 chips (containing 1,036,800 ARM
cores).

2.2 Serial-ATA Links

The six sets of eight edge links are multiplexed
onto six high-speed Serial-ATA links to connect
boards together. These links are driven by the
three on board FPGAs (each driving two of the
links labelled in figure 2).

Packets from the incoming links are assem-
bled into frames by the FPGAs and then sent
via the S-ATA link to the another board where
they are disassembled into SpiNNaker packets
and demultiplexed to the associated chips [4].
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Figure 3: An minimal arrangement of three
boards which forms a torus when the opposing
edges are attached.

The S-ATA links have a theoretical max-
imum bandwidth of 3.2 gigabits/s [8] which
is greater than the total 8 × 0.25 = 2.0 gi-
gabits/s bandwidth of the multiplexed links.
This means that bandwidth will not be reduced
across the multiplexed links however the la-
tency will be increased.

3 Simulator

In order to observe the effects of the multi-
plexed links, a simplified model of the SpiN-
Naker system was simulated. This model aims
to be an extension of the simulation used by
Navaridas et al. [5] extended to include these
new links.

Due to the size and complexity of the full
SpiNNaker system, this simulation uses a rela-
tively crude model similar to [5]. This section
presents the simplifications made and describes
the choice of simulation system used.

3.1 Modelling Simplifications

The system is reduced to a network of nodes
containing a router and traffic generator (fig-
ure 4) modelling a single SpiNNaker chip. All
18 on-board ARM cores and their software are
modelled by the node’s single random traffic
generator.

These nodes are arranged into boards, as
in the real SpiNNaker system, with models of
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Figure 2: The logical arrangement of SpiNNaker chips on a board. Each hexagon represents
one SpiNNaker chip. Chips which share an edge are linked. The external links are divided
up into six groups as shown with opposing edges featuring complementary links. The edge
links are connected to three on-board FPGAs used to multiplex the links onto high-speed S-
ATA connections. The hexagonal pattern is formed layer-by-layer around the 3-hexagon kernel
shown in grey. The boundaries between subsequent layers of the hexagon’s structure are shown
in bold.
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Figure 4: A node in the simulator represent-
ing one SpiNNaker chip. The traffic generator
models all 18 ARM cores.

2-of-7 links connecting nodes to their neigh-
bours. Multiple boards are finally arranged
into a torus and connected together by mod-
els of the proposed S-ATA link.

The simulation is clocked at 150MHz: the
clock speed of the processor, router and S-ATA
link hardware in current real hardware config-
urations. As in previous work, the discretisa-
tion of the simulation is not considered to have
a major effect on model accuracy.

3.1.1 Traffic Generation

All traffic in the simulated network is point-
to-point (P2P) ignoring SpiNNaker’s multicast
routing facilities but greatly simplifying the
task of generating random packets as well as
simplifying the task of routing.

Traffic is generated by a Bernoulli process
where, at a rate of once per cycle, an random
decision is made whether to transmit a new
packet. Packets are sent to a random destina-
tion selected from a uniform distribution. As
in [5], a packet is generated by each traffic gen-
erator every cycle with a probability of 0.01.

Generated packets are placed into a four-
packet buffer before being routed. If the buffer
is full then new packets are dropped until buffer
space is available again.

Packets are generated with a fixed size of
40 bits corresponding to a ‘short’ SpiNNaker
packet. ‘Long’ packets of 72 bits are not in-
cluded in the simulation.
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Figure 5: When sending a packet from node S
to T , an emergency route (thick line) is used if
intended link (dashed) is blocked for too long.

3.1.2 Routing

The router modelled in the simulation uses
simple dimension order routing as used by cur-
rent SpiNNaker routing software for P2P pack-
ets. As in the previous model, the router is able
to route one packet from every input when the
corresponding output is ready every cycle. A
round-robin scheme is used for prioritising the
inputs’ access to output ports.

After 2401 cycles, unrouted packets enter
emergency routing mode where they are routed
via the two sides of a right-angled triangle one
link counter-clockwise (figure 5). If the mes-
sage cannot be sent after a further 240 cycles,
the packet is dropped.

The coordinate system described in [3] de-
fines the dimensions as shown in figure 6a. Also
defined are a corresponding set of unit vectors
i, j and k.

All nodes are given coordinates relative to
the bottom-left node (labelled A in the fig-
ure) defined to be at (0, 0, 0). Coordinates in
this system are not unique due to the non-
orthogonal axes. For example, travelling along
the vector i+j+k from (0, 0, 0) reaches (1, 1, 1)
which is at exactly the same position. This
clearly gives each point an infinite set of valid
coordinates.

Definition 1. As described in [3], a vector rep-
resenting a shortest path between two points is

1The number of cycles before emergency routing
takes place is configurable but this value is used as the
default selected by the current SpiNNaker configuration
tools.

of the form ai+bj+ck with the following con-
straints:

• abc = 0, that is, at most two dimensions
are used (and non-zero) and at least one
isn’t (and is zero).

• The non-zero dimensions have opposite
signs.

For example, nodes A and B in the fig-
ure are at positions which can be written as
(0, 0, 0) and (4, 3, 0) respectively. These partic-
ular forms of coordinate are especially intuitive
when the diagram is sheared to line the x and
y axes up with their conventional counterparts
as in figure 6b. A vector between these points
can be found by subtracting the terms yield-
ing 4i + 3j + 0k. This vector, however, does
not represent the shortest path as the two non-
zero components have the same sign violating
definition 1.

As shown previously, the vector i + j + k
represents a path which leads back to where
it started. As a result we can add or subtract
multiples of this vector to yield a vector match-
ing definition 1. In this case, 4i + 3j + 0k −
3(i + j + k) = 1i + 0j +−3k or simply i− 3k
which is the shortest path vector from A to
B. Dimension order routing is then applied to
yield the path shown.

This process can be extended to apply to
a toroidal mesh where the edges of the mesh
wrap-around. The starting and ending points
are translated into three forms such that the
starting point is at (0, 0, 0) followed by (w2 ,

h
2 , 0)

and (w, h, 0) with w and h being the width and
height of the mesh respectively. The coordi-
nates wrap around the mesh boundaries ac-
cordingly. The shortest path vector for each
of these forms is then found and the shortest
selected2.

2This method is exceedingly inelegant and was se-
lected after several days of working on this problem. It
is hoped that a more elegant solution exists and find-
ing it is left as an exercise for the more geometry-aware
reader.
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Figure 6: An example of a shortest-path be-
tween A and B on a hexagonal mesh. Shown
both normally and sheared to yield the famil-
iar 2D-mesh style layout. Note that the Z
axis elongated which can make interpreting dis-
tances unintuitive in this projection.

3.1.3 Links

The 2-of-7 delay insensitive links are modelled
as taking 23 cycles for a complete 40 bit packet
to arrive and a further 1 cycle for the final ac-
knowledgement to arrive back at the sender al-
lowing the next packet to arrive.

The S-ATA links are modelled by the system
depicted in figure 7. A latency of 20 cycles is
used for the delay buffers. This is derived from
current link hardware designs which features
a 4-stage pipeline running at 150MHz at each
end of the link. This pipeline assembles frames
containing 8 packets which then takes 12 cycles
to be sent over the S-ATA link for a total of 20
cycles.

3.2 Simulator Design

Previous work made use of a simulation using
the INSEE [7] framework. This simulator fea-
tures a traffic generation component (TrGen)
along with a simple functional network simula-
tor (FSIN). FSIN unfortunately does not pro-
vide accurate timing information: all events
are deemed to take one simulation cycle. This
limitation prevents it’s use in this experiment.
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Figure 7: The model of a single direction of
the S-ATA link used by the simulator. Every
cycle, the input scheduler attempts to receive a
packet from an incoming 2-of-7 link and place it
in a corresponding delay buffer. Likewise, the
output scheduler attempts to forward a packet
which has reached the end of the delay buffer
to its corresponding 2-of-7 link. The use of
separate delay links prevent a single channel
from blocking the others while the schedulers
ensure relatively realistic behaviour. The de-
lay approximates the latency incurred by as-
sembling available packets into frames, trans-
mitting them and disassembled again.
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INSEE is alternative able to use the
cycle-accurate ‘SICOSYS’ network simulator.
Though this simulator provides high-accuracy
timing information, it uses vast amounts more
memory for simulation. The INSEE authors
measured the use of around 350MB of mem-
ory for a 16-node system compared to around
20MB used by FSIN. This level of resource us-
age prevents the use of this simulator in this
experiment where simulations involving thou-
sands of nodes are required.

As a result of this unsuitability, a new event-
based simulator was developed.

3.2.1 Parallel Simulation

The Parsec simulation environment [1] is a
parallel event-based simulator which has been
used for both network and circuit level simu-
lations making it well suited to the SpiNNaker
network which fits into the middle of this space.

In Parsec, ‘logical processes’ (LPs) emit
timestamped events which are received by
other LPs. These LPs each feature an ‘ear-
liest output time’ (EOT) and ‘earliest input
time’ (EIT) which indicate the lower-bound of
timestamps of packets which could be trans-
mitted received by an LP respectively.

An LP can run in parallel with another LP
whose EIT is less than their EOT. This ensures
that any events produced by the first LP have a
timestamp which is more recent than the other
LPs EIT and thus can be accepted. If this is
not the case, causality is violated as the sec-
ond LP may have processed an event with a
timestamp equal to its EIT.

Parsec provides a framework for defining LPs
and their EITs and EOTs along with a schedul-
ing system which can potentially run the LPs
in parallel where possible. The system can do
this in one of three ways:

Conservative Scheduling will only allow
LPs to run in parallel which cannot re-
sult in a causality violation and otherwise
executes LPs are executed in serial.

Optimistic Scheduling tries to run LPs in
parallel even if they may result in a causal-
ity violation. When such a violation is

observed the system is wound-back to an
earlier state to correct the violation.

Hybrid Scheduling uses a mixture of the
two approaches allowing each to be used
in parts of the system where it is most suc-
cessful.

3.2.2 Serial Simulation

Unfortunately, due to time-constraints, Parsec
was not used in the implementation of the sim-
ulator. A simple3, serial event-based simulator
based on the Verilog simulator [2] was built us-
ing Python.

In such a simulator the program is broken
into blocks of code which are scheduled to oc-
cur at some point in time. When an event
is ‘emitted’ by a segment of code, functions
bound to this event are scheduled. Events may
be emitted ‘in the future’ causing the bound
functions to be executed at some point later in
simulation time.

The scheduler consists of three queues as
shown in figure 8. Functions are taken from the
‘active queue’ and executed. Execution may
result in new functions being scheduled to oc-
cur immediately, at the very end of the cycle4

or at some time in the future. Such functions
are placed in the associated queue as shown in
the figure.

Once the active queue is exhausted the con-
tents of the inactive queue are moved to the
active queue and execution resumes. This may
result in new events being added to the inactive
queue in which case the process repeats until
both the active and inactive queues are empty.

Next all events from the next available
timestep in the postponed queue are placed in
the ready queue and the new cycle begins. The
scheduler terminates once all three queues are

3A Verilog-style scheduler is extremely simple to im-
plement requiring only 72 lines of Python (or 26 without
white-space and inline documentation).

4In hardware description languages such as Verilog
there is a notion of ‘non-blocking’ assignment. In such
assignments the RHS is calculated immediately and the
result later written to the LHS only at the very end
of the cycle. For example, a register swap using non-
blocking assignment could be written as a<=b; b<=a;

where <= is the non-blocking assignment operator.
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Figure 8: A Verilog-style scheduler.

depleted or after a user defined number of cy-
cles has been executed.

4 Experimental Results

Experiments were conducted to validate the
model’s basic behaviour followed by experi-
ments to observe the latency of packets in the
system and emergency routing behaviour.

4.1 Confirmation of Topological
Properties

The simulator was run for 20,000 cycles with
emergency routing disabled on networks of var-
ious sizes and the average and maximum path
length of packets recorded. The measured re-
sults are shown in table 1 alongside computed
expected values.

The mean measured distances match those
expected to 3 s.f. with the exception of the 48×
48 system. This discrepancy may be due to the
fact that in this larger system, packets taking
the longest routes take around 935 simulation
cycles. The simulation is terminated, not once
all sent packets have arrived, but rather once a
certain simulation time has been reached. As
a result, the mean distance in the system is
likely to be skewed in favour of packets taking
less time to arrive.

Table 1: Path lengths in the simulated net-
work: computed vs. measured.

Network Mean Maximum
Size Comp. Meas. Comp. Meas.

12× 12 5.653 5.646 9 9
24× 24 10.326 10.290 17 17
48× 48 19.663 19.119 33 33

The maximum distance observed matched
the expected values for every network tested.

4.2 Communication Latency

The latency added by the S-ATA links can be
seen in figure 9a where the minimum packet
latency is plotted against a given number of
hops in a 48 × 48 chip system. The system is
shown using only 2-of-7 links, with realistic S-
ATA links with latencies of around 68 cycles
(as described in §3.1.3), and with exaggerated
latencies of 248 cycles.

Steps can be seen every time the number of
hops passes a multiple of 8, the number of chips
in any single dimension on a board, after this a
S-ATA link must be used resulting in the step
in latency. For smaller numbers of hops, the
steps are cleanly defined and have sizes which
correspond to the difference between the S-
ATA link modelled and a regular 2-of-7 link.

An extra step appears at 28 hops, the cause
of which is not currently understood by the
author.

The median latency of an n-hop path in-
creases smoothly as shown in figure 9b as the
probability of crossing a boundary increases
with the number of hops carried out. From the
gradient of these lines it can be seen that the
S-ATA links result in an 80.4% latency over-
head.

4.2.1 Latency Distribution

The packet latencies on systems without S-
ATA links follow a power-law style distribu-
tion which can be seen in figures 10a and 10b.
In systems using S-ATA links, the distribution
becomes fragmented due to the slow links as
shown in figure 10c. In larger systems, which
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Figure 9: Latency for packets travelling along paths of varying lengths when boards are con-
nected using different types of link.

feature greater amounts of traffic, these frag-
ments are hidden by noise added by routing
delays and so the distribution returns to ap-
proximating a power-law as in figure 10d.

4.3 Dimension Order Routing Ef-
fects

The routing algorithm used relies on all ‘hops’
through the system taking the same amount
of time in order to provide minimal-latency
routes. This assumption can be visibly seen
to break-down in systems using S-ATA links.

Figure 11a shows how the latencies vary
across an idle system from a single point.
It can be seen that where board boundaries
are crossed there is a general increase in la-
tency. Because of this, the contours are visibly
distorted from their normal hexagonal shape.
This is particularly visible at the bottom left
and top right of the figure.

When the rest of the system is also loaded
with other traffic, this effect appears to be fur-
ther exaggerated as can be seen in 11b. This
behaviour is likely to be caused by the increase
in the usage of other channels in the S-ATA
links increasing the latency for any given chan-
nel.

A step in latency is also visible within in-
dividual boards as can be seen in figure 12.
Here there are clear edges where the dimen-

sion order routing traverses the dimensions in
an order which incurs an extra board crossing.

4.4 Emergency Routing

The ‘emergency routing’ feature of the SpiN-
Naker system was enabled and its usage is
shown in figure 13. There are clearly visible
hot-spots along horizontal edges of many of the
boards.

If emergency routing is used while trying to
cross north over a S-ATA link the packet will
be diverted to the west node. Once at the west
node, the router tries to send the packet north-
east over the same busy A-ATA link and trans-
mission is again delayed. This also increases
congestion at that node which increases the
likelihood emergency routing also being used.
This pattern is a likely cause of the hotspots
displayed in the figure.

5 Conclusions & Further
Work

In this paper we have described the SpiNNaker
architecture and its heterogeneous interconnec-
tion. A serial simulator was developed for a
simplified model of SpiNNaker which includes
a model of the in-development S-ATA inter-
board links.
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with boards connected via S-ATA links with exaggerated latencies.
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Figure 11: Heat-maps showing the packet latency from the central node (24,24,0) to the rest of
the system. Each pixel represents a node in the system, the boundaries of boards are outlined
in white. Note: A small number of randomly distributed nodes did not receive a packet from
(24,24,0) during simulation due to packets not arriving within the simulation’s execution. For
clarity, the colour of these nodes has been interpolated.
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Figure 12: Heat-map of packet latencies from
central node (24,24,0) on an unloaded sys-
tem. Pixels are chips, white outlines are drawn
along board outlines. The effects of border-
unawareness in routing are visible as a step-
change in latency along the diagonals of the
upper-right boards. The S-ATA latency in this
system has been exaggerated to aid visibility
but is still present when realistic S-ATA laten-
cies are used.

Our results have shown that the inclusion
of S-ATA links has inevitably increased the la-
tency of packet transmission. In particular, as
the amount of traffic in the system increases so
too does the effect of the inter-board bound-
aries.

Naive dimension-order routing makes no ef-
fort to minimise the use of expensive inter-
board links. Experimental results show an 80%
latency overhead to the median packet latency.
Some of this latency can be attributed to the
specific dimension order used for routing. Fu-
ture work could investigate a small modifica-
tion to the routing algorithm allowing alterna-
tive dimension orders to be used to reduce the
number of borders crossed potentially reducing
the median latency.

Finally, the ‘emergency routing’ facility pro-
vided by SpiNNaker unfortunately makes the
assumption that links are independent. This
assumption does not apply to the S-ATA links
where multiple links share a single multiplexed
path. As a result, emergency routing simply

extends the path length a packet takes with-
out improving performance. Future work may
experiment with the effects of selectively dis-
abling emergency routing for boundary links
to avoid this effect.
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