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1 Introduction

The human brain is the subject of intense research, a significant portion of which relies
on simulations of large-scale models of the brain. Due to the unusual computational
requirements of these simulations numerous specialised hardware platforms have been
developed to cope [1, 2, 3, 4, 5]. This project will focus on the interconnection networks
within such systems, in particular on network topology and power management.

Neural models of the brain typically consist of a directed graph of ‘neurons’ with
simple, well defined behaviour and which communicate by sending ‘spikes’ to their neigh-
bours. The only significant features of a spike are its origin and time of arrival. Such
models have been demonstrated to reproduce high-level cognitive behaviours such as
problem solving and memory [6].

Conventional super computer interconnection networks are poorly suited to human
scale models containing tens of billions of neurons [7] each with thousands of connections
[8]. Super computer networks are designed to handle the transmission of large blocks of
data to a limited set of destinations. This is in sharp contrast with neural simulation
where a spike may be sent to thousands of destinations and consists only of an origin ID
and timestamp. Further, in realtime simulations timestamps may be omitted though the
maximum delivery latency must be strictly limited. Due to this mismatch, alternative
technologies are popular in neural simulators. Recent systems, such as SpiNNaker [1]
and Bluehive [2], have begun to incorporate super computer style interconnect to benefit
from increased bandwidth at the expense of power. It is here that this project hopes to
contribute to a new generation of power efficient interconnection networks.

2 SpiNNaker

SpiNNaker is a hardware platform which combines low-power mobile-phone grade CPU
cores using a custom, high-performance interconnection network to simulate large net-
works of neurons in realtime. The largest planned machine, which is in the final stages
of manufacturing, is designed to simulate one billion (10?) neurons in biological realtime
[9] and will fill ten server-room cabinets. Figure 1 shows how over one million CPU cores
are spread over thousands of chips and hundreds of circuit boards.
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Figure 1: Construction of the largest planned SpiNNaker machine.

Between chips on the same board asynchronous, parallel signalling is used with groups
of 16 wires required to communicate data between neighbouring chips [10]. This technique
only consumes energy when the link is in use. Connecting the 768 wires required between
boards would be prohibitively expensive so a different technology, High-Speed Serial
(HSS), is used [11] reducing the number of wires to 24. HSS links can support high
bandwidths and in SpiNNaker, one board-to-board HSS link carries the load of eight
asynchronous links. Unfortunately, HSS links consume energy at the same rate when
loaded and idle; to reduce power the links must be operated at a lower speed.

In conventional HSS applications, links change speed dynamically depending on load
to cope with unpredictable traffic patterns [12]. Neural simulation traffic is also unpre-
dictable but unfortunately, during link speed changes, HSS links become non-operational
for around 1 ms [13]. To maintain realtime performance in SpiNNaker, the maximum
latency for a spike traversing the network is also around 1 ms making delays during link
speed changes unacceptable. As a result HSS links in SpiNNaker, as in other systems, are
operated at full speed at all times despite average network loads between 5% and 10% of
link capacity [2, 9].

This project will develop an improved HSS interconnect for neural simulations. Since
SpiNNaker’s HSS board-to-board links are implemented by reconfigurable FPGAs the
platform lends itself to a prototype implementation.



Figure 2: 2D hexagonal torus topology used in SpiNNaker. Each box represents an
eighteen core SpiNNaker chip. Links at the edges of the network wrap-around to connect
to those on the other side. Actual networks are much larger.

3 Preliminary work

Work has initially focused on developing improvements to existing neural interconnection
networks and building infrastructure to enable their implementation within SpiNNaker.

3.1 SpiNNaker interconnect modelling

A detailed simulation model of SpiNNaker’s interconnect was developed and compared
with SpiNNaker hardware as part of a collaborative work exploring novel hardware-
accelerated modelling of computer architectures. The result demonstrated a strong cor-
respondence between the simulator and SpiNNaker indicating its suitability for use in the
development of improvements to SpiNNaker’s interconnect. This work is being prepared
for journal submission in early September. This simulator will be exploited in upcoming
work.

3.2 Wiring large systems with small-world connectivity

HSS technology imposes constraints on the lengths of wires used in large systems; for
example in SpiNNaker, wires are limited to 1 metre or less [14]. SpiNNaker’s network
uses a 2D hexagonal torus topology (illustrated in figure 2) which, if laid out naively,
would require cables long enough to span the whole system. For the large machine in
figure 1, this would be over 6 metres. Preliminary work has developed a tool to aid the
design of alternative physical organisations of SpiNNaker machines (such as in the figure)
which maintain the same logical connectivity but only use wires less than a metre long.

Watts and Strogatz demonstrated that adding a small number of random links to a
torus topology can convert it into a ‘small-world” network [15]. An example of a small-
world network is the human social network where the idea is popularly known as the
theory of ‘six degrees of separation’. The theory states that any two people are connected
by a chain of no more than six acquaintances. This property is also desirable in computer
networks since it reduces the maximum and average number of ‘hops’ messages must make
when travelling through a network. This both reduces the latency of messages and also
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Figure 3: Research plan Gantt chart. Boxes indicate the expected duration of a task,
thick lines indicate slack and red arrows show dependencies between tasks. Note the
non-linear scale.

frees up resources on links [16]. This freeing of resources enables the network to operate
at lower speeds and thus lower power.

Random links added to a network can easily require wires longer than a metre and
allowing only short random connections was found to prevent small-world networks from
forming. However, when systems were laid out to reduce wire lengths logically distant
boards become physically close. This meant that even short cables could create logically
long connections, once again allowing small-world networks to form.

3.3 High-speed serial (HSS)

Preliminary work has also resulted in the development of foundational hardware com-
ponents for implementing new connectivity schemes within SpiNNaker’s board-to-board
interconnect. These components include a crossbar switch [17] which allows spikes to
be selectively redirected and interfaces for connecting links operating at different speeds.
These components will be built upon during upcoming work.

A proof-of-concept demonstration system was produced which connects SpiNNaker to
a host PC using spare HSS connections on SpiNNaker boards. This system replaces an ex-
isting Ethernet connection to SpiNNaker (out of the scope of this report) used for system
management and interaction with neural models. Though the prototype link operates at
a fraction of the maximum speed of an HSS link, it has achieved an order-of-magnitude
improvement in host bandwidth for certain neural loads by bypassing bottlenecks in the
Ethernet subsystem.
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Figure 4: Connectivity between boards (circles) in part of a SpiNNaker system. A link
undergoing a speed change is avoided by traversing two neighbouring links.

4 Research plan

An outline of planned research is given in figure 3. The major components of this plan
are outlined in this section.

4.1 Benchmarking

To measure success, a suite of benchmarks is required. A method of automatically con-
verting both models developed by neuroscientists and a number of synthetic tests for the
Neural Engineering Framework (NEF) [18] into benchmarks has been proposed. This
approach ensures that the benchmarks will represent realistic neural loads while also
allowing systematic experimentation and exploration of corner cases.

4.2 Small-world

Building on preliminary work, models of small-world configurations in SpiNNaker’s net-
work will be modelled and, if found to be effective, implementation will follow. It is
hoped that the associated reduction in traffic will allow a global reduction in link speed.
The most significant open problem to be solved is the determination of the complexity
of routing strategy required to exploit small-world connections. Simpler designs may be
insufficient for realistic systems but complex routers may consume more power than they
save.

4.3 HSS power management

As described earlier, HSS systems present an energy efficiency challenge for neural loads
due to their load-independent energy consumption and slow link speed changes. This
work focuses on reducing the time HSS links are unavailable during link speed changes
making it possible to change link speeds dynamically in response to changes in system
load.

Two complementary approaches are being considered: the first involves transmitting
data redundantly while a link is changing speed. During speed changes, the link becomes
unreliable and existing systems simply wait until the link stabilises at the expense of
latency to avoid adding additional hardware for this special case. By using forward



Error Correction (FEC) [19] link errors can be corrected inexpensively using redundant
encoding of data sent over the link.

The second approach is to redirect data via an alternative route during link speed
changes. This is possible due to redundancy inherent in the toroidal mesh topology of
board-to-board links in SpiNNaker; while a link changes speeds, data can be redirected
via two neighbouring links as shown in figure 4.

Energy consumption will be measured during the execution of the benchmarks de-
scribed above using power measurement techniques used in other SpiNNaker power usage
studies [20, 21].

5 Conclusions

Large scale neural simulations represent a rich opportunity for neuroscientists to under-
stand the brain but progress has been held back by their computational expense. While
specialised architectures such as SpiNNaker have significantly advanced the state of the
art, their interconnection networks are only beginning to adopt HSS interconnect tech-
nologies which enjoy heavy investment from the super computer industry [22].

This work aims to develop a new generation of HSS-based networks for neural sim-
ulators which improve both system performance and power efficiency. Preliminary work
has developed network modelling tools and proposed a novel technique which adds small-
world connectivity to HSS networks, reducing both latency and network load. Planned
work will implement this small-world connectivity scheme within SpiNNaker’s HSS board-
to-board interconnect and complement this with the development of an HSS power man-
agement scheme appropriate for neural systems.
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